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Abstract. Max-algebra, where the classical arithmetic operations of addition and multiplication are replaced
by a ⊕ b := max(a, b) and a ⊗ b := a + b offers an attractive way for modelling discrete event systems and
optimization problems in production and transportation. Moreover, it shows a strong similarity to classical
linear algebra: for instance, it allows a consideration of linear equation systems and the eigenvalue problem.
The max-algebraic permanent of a matrix A corresponds to the maximum value of the classical linear assign-
ment problem with cost matrix A. The analogue of van der Waerden’s conjecture in max-algebra is proved.
Moreover the role of the linear assignment problem in max-algebra is elaborated, in particular with respect to
the uniqueness of solutions of linear equation systems, regularity of matrices and the minimal-dimensional re-
alisation of discrete event systems. Further, the eigenvalue problem in max-algebra is discussed. It is intimately
related to the best principal submatrix problem which is finally investigated: Given an integer k, 1 ≤ k ≤ n,
find a (k × k) principal submatrix of the given (n×n) matrix which yields among all principal submatrices of
the same size the maximum (minimum) value for an assignment. For k = 1, 2, ..., n, the maximum assignment
problem values of the principal (k × k) submatrices are the coefficients of the max-algebraic characteristic
polynomial of the matrix for A. This problem can be used to model job rotations.

Key words. max-algebra – assignment problem – permanent – regular matrix – discrete event system –
characteristic maxpolynomial – best principal submatrix assignment problem – job rotation problem

1. Introduction

In the max-algebra the conventional arithmetic operations of addition and multiplication
in the real numbers are replaced by

a ⊕ b := max(a, b), (1)

a ⊗ b := a + b, (2)

where a, b ∈ R := R ∪ {−∞}. The algebraic system (R, ⊕, ⊗) offers an adequate
language to describe problems from communication networks (Shimbel [23]), synchro-
nization of production (Cuninghame-Green [8]) and transportation, shortest paths (e.g.
Peteanu [21], Carré [7], Gondran [17]) and discrete event systems, to mention just a few
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applications in the field of operations research and optimization. But the max-algebra is
also interesting from a mathematical point of view: though the operation “subtract” does
not exist within this system, nevertheless many notions from conventional linear algebra,
like equation systems, eigenvalues, projections, subspaces, singular value decomposi-
tion and a duality theory can be developed within this system. The first comprehensive
account on algebraic properties of max-algebra and its applications can be found in the
lecture notes of Cuninghame-Green [10]. Further important surveys in this field are e.g.
the monographs of Baccelli, Cohen, Olsder and Quadrat [1] and Cuninghame-Green
[12], the theses of Gaubert [15] and De Schutter [14], the survey paper of Gondran
and Minoux [19] and the monograph of Zimmermann [25] on optimization in ordered
algebraic structures.

It turns out that there are various connections between max-algebra and the classical
linear assignment problem. One such connection is that the max-algebraic analogue of
the permanent of a matrix A corresponds to the maximum value of the linear assignment
problem with cost matrix A. Secondly, the unique solvability of a linear system of
equations in max-algebra is closely related to the solution set of a linear assignment
problem. This will lead us to consider strongly regular and regular matrices which –
in turn – play a crucial role in the minimal-dimensional realisation problem of discrete
event dynamical systems. Since the matrices arising in this context are symmetric, it is
interesting to note that a symmetric normal form can always be achieved for symmetric
matrices.

In connection with the eigenvalue problem, Cuninghame-Green [11] introduced the
max-algebraic analogue of the characteristic polynomial of a matrix A as characteristic
maxpolynomial. The coefficients of this characteristic maxpolynomial are the maximum
assignment problem values of principal submatrices of A. This leads to the Best Principal
Submatrix Assignment Problem (BPSAP): Given an integer k, 1 ≤ k ≤ n, find a (k × k)

principal submatrix of the given matrix A which yields among all principal submatrices
of the same size the maximum (minimum) value for an assignment. For certain integers
k, (BPSAP) can be solved in polynomial time. In the general case the complexity status
of the best principal submatrix assignment problem is still unknown to the best knowl-
edge of the authors. There exists, however, a randomized polynomial algorithm for this
problem (see Section 6), provided the entries of matrix A are polynomially bounded.

The paper is organised as follows. In the next section we introduce the basic notions
of max-algebra and provide an example from transportation. Then we discuss linear
equation systems in max-algebra and introduce strongly regular and regular matrices.
These play a role in the next section during the discussion on a minimal-dimensional
realisation of discrete event dynamical systems. It leads to assignment problem instances
with symmetric cost matrices. Next the eigenvalue problem in max-algebra and its rela-
tion to the best principal submatrix problem is outlined. Finally we discuss the solution
of the best principal submatrix assignment problem.

2. Max-algebra

Let us denote a ⊕ b := max(a, b) and a ⊗ b := a + b for a, b ∈ R := R ∪ {−∞}.
The operations ⊕ and ⊗ can be extended to vectors and matrices in the same way as in
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conventional linear algebra. Thus, if A = (aij ), B = (bij ) and C = (cij ) are matrices
with elements from R of compatible sizes, we can write C = A ⊕ B if cij = aij ⊕ bij

for all i, j and C = A ⊗ B if cij = ∑⊕
k aik ⊗ bkj = maxk(aik + bkj ) for all i, j .

In max-algebra the unit matrix I is a square matrix of appropriate size whose diagonal
elements are all 0 and whose off-diagonal elements are −∞.

Let us give an example which leads to a linear system of equations in max-algebra:

Example 1. Two airplanes P1 and P2 arrive at the airport C after a flying time of 1 and 3
hours, respectively. Passengers may change from P1 to P2 within 30 minutes. Passengers
changing from P2 to P1 need 60 minutes due to customs clearance. The planes should
continue their journey at specified times b1 and b2. When are they to depart latest from
their origin airports?

In order to model this situation we introduce the variables x1 and x2 which are the
departing times from the original airports, and b1 and b2 which are the departing times
from airport C. We get

b1 = max(x1 + 60, x2 + 180 + 60),

b2 = max(x1 + 60 + 30, x2 + 180).

This system can be written as a linear system of equations

A ⊗ x = b (3)

in max-algebra using the matrix

A :=
(

60 240
90 180

)

and the vector x := (x1, x2)
t . �	

We shall deal in the next section with the question under which conditions such a system
of linear equations in max-algebra is uniquely solvable. This will lead us to strongly reg-
ular and regular matrices which play a role in describing discrete event-driven systems,
like the following cyclic scheduling problem.

Example 2. Two suburban trains T1 and T2 run hourly from their home stations A1 and
A2, respectively, on circular lines which meet in a station S. The trains start their travel in
A1 and A2, at the times x1(0) and x2(0), respectively. In order to allow people to change
trains in station S, they must wait 5 minutes after the arrival of the other train, before
they can continue. One train needs 40 minutes from A1 to S, the other train needs 45
minutes from A2 to S. Let x1(r) and x2(r) denote the earliest departure times for train
T1 and train T2, respectively, from their home stations. Then their schedule develops
according to the following system

x1(r) = max(x1(r − 1) + 40, x2(r − 1) + 45 + 5) + 40,

x2(r) = max(x1(r − 1) + 40 + 5, x2(r − 1) + 45) + 45.

This system can be written in max-algebra as a linear recurrence

x(r) = A ⊗ x(r − 1) ⊗ b (4)
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with

A :=
(

40 50
45 45

)

.

and b = (40, 45)t . �	

An interesting operational question in controlling such systems is: How must the
system be set in motion to ensure that it moves forward in regular steps? This question
asks for a constant λ such that

x(r + 1) = λ ⊗ x(r).

In other words, λ is a max-algebraic eigenvalue for which

A ⊗ x(r) = λ ⊗ x(r) (5)

holds. The eigenvalue problem will be discussed in Section 5.
Now, why does the assignment problem play an important role in max-algebra? One

reason is that the max-algebraic permanent of a matrix A leads to the problem of finding
a permutation ϕ which yields a maximum value for the assignment problem with cost
matrix A.

The max-algebraic permanent of an n×n matrix A = (aij ) is defined in an analogue
way to classical linear algebra by

maper(A) :=
∑

ϕ∈Sn

⊕ ∏

1≤i≤n

⊗
aiϕ(i), (6)

where Sn denotes the set of all permutations of the set {1, 2, ..., n}. In conventional
notation,

maper(A) = max
ϕ∈Sn

∑

1≤i≤n

aiϕ(i)

which is the maximum value of the assignment problem with cost matrix A. Throughout
the paper we shall denote the set of all permutations which yield the maximum of the
assignment problem with cost matrix A by ap(A).

A first result concerns the max-algebraic version of the van der Waerden Conjecture.
An n × n matrix A = (aij ) is called doubly stochastic, if all aij ≥ 0 and all row and
column sums of A equal 1.

Proposition 2.1. (Max-algebraic van der Waerden Conjecture)
Among all doubly stochastic (n × n) matrices the max-algebraic permanent obtains its
minimum for the matrix A∗ = (aij ) with aij := 1/n for all i and j .

Proof. We have maper(A∗) = maxϕ∈Sn

∑
1≤i≤n a∗

iϕ(i) = 1. Assume that there is a
doubly stochastic matrix X = (xij ) with maxϕ

∑
1≤i≤n xiϕ(i) < 1. Then we get for all
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permutations ϕ:
∑

1≤i≤n xiϕ(i) < 1. This holds in particular for the permutations ϕk

which map i to i + k modulo n for i = 1, 2, ..., n. Thus we get

n =
n∑

i=1

n∑

j=1

xij =
n−1∑

k=0

n∑

i=1

xiϕk(i) < n,

a contradiction. Thus matrix A∗ yields the minimum for the max algebraic permanent.
�	

Later we will also deal with polynomials in max-algebra. Let x be a variable ranging
in R. For any positive integer r we define x(r) := x ⊗ x ⊗ ...⊗ x (r-fold) and x(0) := 0.
Let coefficients a0, a1, ..., an ∈ R be given. A maxpolynomial has the form

p(x) =
∑

0≤r≤n

⊕
ar ⊗ x(r) = max

1≤r≤n
(ar + rx). (7)

This shows that the graph of maxpolynomials is a piecewise linear, convex function.
Maxpolynomials admit a linear factorisation in a way similar to that described in the
fundamental theorem of algebra.

Proposition 2.2. Cuninghame-Green and Meier [13]
Any maxpolynomial (7) can be written as a product of n linear factors

p(x) = an ⊗ l1(x) ⊗ l2(x) ⊗ ... ⊗ ln(x), (8)

where every linear factor lr (x) has either the form x or (x ⊕ br) for some br ∈ R.

Written in a conventional way, the factorisation theorem states that any maxpolynomial
can be written in the form

an + max(x, b1) + max(x, b2) + ... + max(x, bn).

The constants br , 1 ≤ r ≤ n, are called the corners of p(x).

3. Equation systems

Let an m × n matrix A with elements from R and a real vector b ∈ R be given. We
consider the linear equation system

A ⊗ x = b. (9)

As in conventional linear algebra such a system may have none, exactly one or infinitely
many solutions. Of special interest is the case when such a system has just one solution.
In this respect it has been shown:

Proposition 3.1. (Cuninghame-Green [10], Butkovič [3])
Let A be a real n × n matrix and let b ∈ R

n. The linear equation system A ⊗ x = b has
a unique solution x̄ if and only if the matrix C = (cij ) with cij := aij − bi has exactly
one column maximum in every row and column. The solution x̄ = (x1, x2, ..., xn)

t is
given by

xj := − max
1≤i≤n

(aij − bi).
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This theorem suggests that assignments play a role with respect to the unique solubility
of a linear equation system. And indeed, if a linear equation system with a real n × n

coefficient matrix is soluble and the solution is unique, then the linear assignment prob-
lem with cost matrix A has only one solution ϕ with maximum value, i.e. |ap(A)| = 1.
An (n × n) matrix A is called strongly regular, if there exists a vector b ∈ R

n such that
A ⊗ x = b has a unique solution.

Proposition 3.2. (Butkovič [5])
A ∈ R

n×n is strongly regular if and only if there is only one solution for the linear
assignment problem with cost matrix A yielding a maximum value.

In order to check whether |ap(A)| = 1 or not, one can proceed as follows. We say the
n × n matrix B ≤ 0 is a normal form of the matrix A if there is a constant z such that
for all permutations

n∑

i=1

aiϕ(i) = z +
n∑

i=1

biϕ(i) (10)

and there exists a permutation ϕ0 with

n∑

i=1

biϕ0(i) = 0.

It is straightforward to see that ap(A) = ap(B). Matrix B can be obtained from A e.g.
by applying the Hungarian Method. By permuting the rows and columns of B we can
achieve that the identical permutation id lies in ap(B):

id ∈ ap(B). (11)

Assuming (11) we define a digraph GB(V, E) with the node set V := {1, 2, ..., n} and
arcs (i, j) ∈ E if and only if i �= j and bij = 0. Now, |ap(A)| = 1, if and only if
the graph GB is acyclic. Conversely, the question whether a digraph GB is acyclic can
straightforwardly be formulated as the strong regularity question for a suitably defined
square matrix.

The statement of Proposition 3.2 does not hold in non-dense subgroups of the addi-
tive group of reals, e.g. for integer matrices, but a necessary and sufficient condition for
matrices over an arbitrary linearly ordered commutative group has been proved in [5].

Now we define linearly dependent vectors in max-algebra. The vectors a1, a2, ..., an

are called linearly dependent, if there are real numbers λj and two non-empty, disjoint
subsets S and T of the set {1, 2, ..., n} such that

∑

j∈S

⊕
λj ⊗ aj =

∑

j∈T

⊕
λj ⊗ aj .

If such a representation is not possible, the vectors are called linearly independent. A
square matrix is called regular, if its column vectors are linearly independent. Gondran
and Minoux [18] showed the following criterion for the regularity of a matrix.
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Proposition 3.3. [19, 18]
A matrix A ∈ R

n×n is regular if and only if every permutation yielding the maximum
value for the linear assignment problem with cost matrix A has the same parity.

Proposition 3.2 immediately implies that a strongly regular matrix is regular. Butkovič
[4] showed that the question whether a matrix is regular or not is closely related to the
even cycle problem.

Theorem 3.4. [4]
Let B be a normal form of A ∈ R

n×n in which (if necessary) the rows or columns have
been permuted so that id ∈ ap(B). Then A is regular if and only if the digraph GB does
not contain an even cycle.

Since the even cycle problem has been shown to be polynomially solvable (see Robert-
son, Seymour and Thomas [22]), the problem to check whether a given square matrix is
regular can be solved in polynomial time.

4. Minimal-dimensional realisation of discrete event systems

A classical problem is the following. An unknown system emits a sequence of real-num-
ber signals

G = {gj }∞j=0

at discrete time intervals. Find a compact description of the system given only this ob-
served sequence. Solutions of this problem depend on the assumption we set on the
underlying process. In system theory significant effort has been devoted to the case
when the process is describable through the state vector x(j) ∈ R

n of the system at
time j = 0, 1, ... and the change of state is described through a linear transformation. In
some synchronous processes this would become a max-algebraic linear transformation
of the form

x(j) �→ x(j + 1) = A ⊗ x(j), x(0) = b,

where A ∈ R
n×n, b ∈ R

n and the states are observed through an observation vector
c ∈ R

n that is

gj = ct ⊗ x(j), j = 0, 1, ...

We call gj Markov parameters and a triple (A, b, c), where A ∈ R
n×n, b, c ∈ R

n,

a realisation of the discrete-event system (DES) emitting G if

gj = ct ⊗ A(j) ⊗ b (j = 0, 1, ...)

where by convention A(0) ⊗b = b. In general, there are many trivial realisations but for
a compact, economical description we seek a realisation of the least possible dimension
n – a minimal dimensional realisation (MDR).
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An important upper bound of the dimension of MDR is based on the following max-
algebraic version of the Cayley-Hamilton theorem. Straubing [24] showed that for every
matrix A ∈ R

n×n there exists a characteristic equation of the form
∑

j∈S

⊕
αj ⊗ λ(j) =

∑

j∈T

⊕
αj ⊗ λ(j), (12)

where S and T are non-empty, disjoint subsets of the set {0, 1, ..., n} and the real coef-
ficients αj , j ∈ S ∪ T , are determined by the entries of the matrix A.

Proposition 4.1. (Cayley-Hamilton Theorem, Straubing [24])
Matrix A ∈ R

n×n satisfies its characteristic equation (12) when substituted for λ.

Given a sequence G = {gj }∞j=0, we define the Hankel matrix Hr (r = 0, 1, 2, ...)

associated with the DES by







g0 g1 ... gr

g1 g2 ... gr+1
...

...
...

gr gr+1 ... g2r








.

Suppose that G has a realisation of order n. Thus

gj = ct ⊗ A(j) ⊗ b (j = 0, 1, ...)

for some A ∈ R
n×n, b, c ∈ R

n. The matrix A satisfies its characteristic equation, that is
∑

j∈S

⊕
αj ⊗ A(j) =

∑

j∈T

⊕
αj ⊗ A(j)

holds for some non-empty, disjoint subsets S and T of the set {0, 1, ..., n} and real co-
efficients αj , j ∈ S ∪ T . Let us multiply this equation by A(k), k ≥ 0, and then by ct

from the left and by b from the right. Hence we have
∑

j∈S

⊕
αj ⊗

(
ct ⊗ A(k+j) ⊗ b

)
=

∑

j∈T

⊕
αj ⊗

(
ct ⊗ A(k+j) ⊗ b

)

or, equivalently
∑

j∈S

⊕
αj ⊗ gk+j =

∑

j∈T

⊕
αj ⊗ gk+j

for every integer k ≥ 0. Thus we get for r ≥ n

∑

j∈S

⊕
αj ⊗ γj =

∑

j∈T

⊕
αj ⊗ γj ,

where γ1, ..., γr denote the columns of Hr. This means that the columns of Hr are
linearly dependent. Using Proposition 3.3 we get (see also Gaubert, Butkovič and
Cuninghame-Green [16])
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Theorem 4.2.
If for some r > 0 all maximum assignment solutions of the linear assignment problem
with cost matrix Hr have the same parity, then there is no realisation of dimension r or
less for the system producing {gj }∞j=0.

As we already mentioned before the question whether all optimal solutions to the
assignment problem are of the same parity can be decided in polynomial time, see The-
orem 3.4, but the algorithm is involved and is likely to be of high complexity. So the last
theorem motivates further research on the linear assignment problem with a symmetric
cost matrix. In particular the question remains open, whether the linear assignment prob-
lem whose coefficient matrix is a Hankel matrix can be solved in a faster way than in
O(n3) steps. The following proposition shows that we can always achieve a symmetric
normal form, if the coefficient matrix of the linear assignment problem is symmetric.

Proposition 4.3. For a symmetric n × n matrix A a symmetric normal form can be
determined in O(n3) steps.

Proof. It is well known that a normal form B of an n×n matrix A can be found in O(n3)

time by algorithms solving the linear assignment problem. If A is symmetric, then the
permutations ϕ and ϕ−1 yield the same value. Using (10) we get

2
n∑

i=1

aiϕ(i) =
n∑

i=1

aiϕ(i) +
n∑

i=1

aiϕ−1(i)

= 2z +
n∑

i=1

biϕ(i) +
n∑

i=1

bϕ(i)i

= 2z +
n∑

i=1

(biϕ(i) + bϕ(i)i ).

Thus,

B := 1

2
(B + Bt)

is a symmetric normal form of A. �	
From the symmetry of the normal form it follows:

Corollary 4.4. There always exists an optimal solution consisting only of odd cycles
(possibly loops) and 2-cycles (edges) in the cyclic representation of ϕ.

The Corollary says in particular that every even cycle in the optimal solution can be
split into 2-cycles.

5. The eigenvalue problem

It has been shown by Cuninghame-Green [9] that the max-algebraic eigenvalue of a
weighted adjacency matrix of a strongly connected digraph is uniquely defined and can
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be computed as the maximum cycle mean in this digraph. This is true in particular for
all matrices with finite entries. Moreover, Cuninghame-Green [11] showed that there
is a close connection between the eigenvalue λ of a matrix A and a maxpolynomial
which plays the role of the characteristic polynomial in max-algebra. The max-algebraic
characteristic polynomial called characteristic maxpolynomial of a square matrix A is
defined by

χA(x) := maper(A ⊕ x ⊗ I ).

In other words, it is the max-algebraic permanent of the matrix







a11 ⊕ x a12 · · · a1n

a21 a22 ⊕ x · · · a2n

...
...

...

an1 an2 · · · ann ⊕ x








.

This means that

χA(x) = δ0 ⊕ δ1 ⊗ x ⊕ · · · ⊕ δn−1 ⊗ x(n−1) ⊕ x(n)

or written in conventional notation

χA(x) = max (δ0, δ1 + x, · · · , δn−1 + (n − 1)x, nx) .

Thus, viewed as a function in x, the characteristic maxpolynomial of a matrix A is a
piecewise linear, convex function which can be found in O(n4) steps, see Burkard and
Butkovič [2] who improve a previous result by Butkovič and Murfitt [6]. The method in
[2] is based on ideas from computational geometry combined with solving assignment
problems.

If for some k ∈ {0, ..., n} the inequality

δk ⊗ x(k) ≤
∑

i �=k

⊕
δi ⊗ x(i)

holds for every real x then the term δk ⊗ x(k) is called inessential, otherwise it is called
essential. Note that inessential terms are not needed in order to describe χA(x) as a
function of x. Inessential terms will not be found by the method described in [2].

According to Proposition 2.2 the characteristic maxpolynomial admits a representa-
tion by linear factors. In particular, Cuninghame-Green [11] showed

Proposition 5.1. The eigenvalue of a real n × n matrix A is the largest corner in the
representation of the characteristic maxpolynomial by linear factors.

Example 3. [11] Let

A =



2 1 4
1 0 1
2 2 1



 .
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The characteristic maxpolynomial of this matrix is

χA(x) = maper




2 ⊕ x 1 4

1 0 ⊕ x 1
2 2 1 ⊕ x





= x(3) ⊕ 2 ⊗ x(2) ⊕ 6 ⊗ x ⊕ 7

= (x ⊕ 1) ⊗ (x ⊕ 3)(2).

The last expression shows that 3 is the largest corner of the characteristic maxpolyno-
mial. Therefore matrix A has the eigenvalue 3. �	

Let A = (aij ) be an n × n matrix. Any matrix of the form







ai1i1 ai1i2 · · · ai1ik

ai2i1 ai2i2 · · · ai2ik
...

...
...

aiki1 aiki2 · · · aikik








with 1 ≤ i1 < i2 < ... < ik ≤ n is called a (k × k) principal submatrix. The best
principal submatrix assignment problem BPSAP(k) can be stated as follows:
For given k, 1 ≤ k ≤ n, find a principal submatrix of size k and a permutation ϕ of the
set {1, 2, ..., k} such that

k∑

r=1

airϕ(ir )

is minimum (or maximum).

Cuninghame-Green [11] showed that the max-algebraic characteristic polynomial
of a matrix A is closely related to the best principal submatrix assignment problem.

Proposition 5.2. [11] Let χA(x) = δ0 ⊕ δ1 ⊗ x ⊕ · · · ⊕ δn−1 ⊗ x(n−1) ⊕ x(n) be the
characteristic maxpolynomial of an n × n matrix A. Then the coefficients δk are given
by

δk =
∑

B∈Ak

⊕
maper(B), (13)

where Ak is the set of all principal submatrices of A of size (n − k) × (n − k).

Obviously, δ0 = maper(A) = maxϕ

∑n
i=1 aiϕ(i) and δn−1 = max(a11, a22, ..., ann).

There is an operations research interpretation – called the job rotation problem –
of the coefficients of the characteristic maxpolynomial: Suppose that a company with
n employees requires these workers to swap their jobs (possibly on a regular basis) in
order to avoid exposure to monotonous tasks (for instance manual workers at an as-
sembly line or ride operators in a theme park). It may also be required that to maintain
stability of service only a certain number of employees, say k (k < n), actually swap
their jobs. With each pair old job – new job a coefficient may be associated expressing
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the cost (for instance for an additional training) or the preference of the worker to this
particular change. So the aim may be to select k employees and to suggest a plan of
the job changes between them so that the sum of the coefficients corresponding to these
changes is minimum or maximum. This task leads to finding a k ×k principal submatrix
of A for which the assignment problem value is minimum or maximum (the diagonal
entries can be set to ∞ or −∞ to avoid an assignment to the same job).
In the next section we discuss the solution of the best principal submatrix assignment
problem in greater detail.

6. The best principal submatrix assignment problem

There is no polynomial method known to the authors to solve the best principal subm-
atrix problem in general for a given size k. As we mentioned, however, in the previous
section, (BPSAP) can be solved for certain integers k in polynomial time, namely for
those k for which δn−k is an essential term of the characteristic maxpolynomial of the
considered matrix A. The graph of the function

χA(x) = max (δ0, δ1 + x, · · · , δn−1 + (n − 1)x, nx)

can be found in the following way (for details, see [2]): For small values of x, the diagonal
elements of A ⊕ x ⊗ I remain unchanged. This means,

δ0 = maper(A) = max
ϕ∈Sn

∑

1≤i≤n

aiϕ(i).

For large values of x we get χA(x) = nx. It is easy to see that all possible slopes of
the linear parts of χA(x) are k = 0, 1, 2, ..., n. The slopes correspond to the number
of diagonal elements which are replaced by the current x. In order to find the graph of
function χA(x) we intersect the two lines y = δ0 and y = nx and call the intersection
point x1. In order to determine χA(x1) we replace all diagonal elements of A which are
smaller than x1 by x1 and solve the assignment problem with the modified cost matrix.
Let the optimum value of the assignment problem be z1 and let r be the number of diag-
onal elements in the optimal solution which are equal to x1. Then δr = z1 − rx1 and δr

is the optimum value of the best principal submatrix assignment problem for k = n− r .
If r ≥ 2, we intersect the two lines y = δ0 and y = δr + rx and get a new value x2.

We proceed as above: we replace all diagonal elements of A which are smaller than x2
by x2 and solve the assignment problem with the modified cost matrix. Let the optimum
value of the assignment problem be z2 and let s be the number of diagonal elements
which are equal to x2 and occur in the optimal assignment solution. Then δs = z2 − sx2
and δs is the optimum value of the best principal submatrix assignment problem for
k = n − s. Since only n different slopes are possible, all linear pieces of the function
χA(x) can be found in this way by solving O(n) linear assignment problems. The opti-
mal solutions of the assignment problems whose diagonal entries are modified as above
yield also optimal solutions for the corresponding best principal submatrix assignment
problems. Since, however, in general not all values k, 0 ≤ k ≤ n, are taken as slopes,
i.e. since the characteristic maxpolynomial of matrix A has in general inessential terms,
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the best principal submatrix assignment problem cannot be solved for all k, 1 ≤ k ≤ n,
in this way.

In general, the best principal submatrix assignment problem BPSAP(k) for size k

can be described by the following integer program. We modify the linear assignment
problem

max
n∑

i=1

n∑

j=1

aij xij

s.t.
n∑

i=1

xij = 1 for all j = 1, . . . , n,

n∑

j=1

xij = 1 for all i = 1, . . . , n,

xij ∈ {0, 1} for all i, j = 1, . . . , n (14)

by introducing n additional binary variables yi , i = 1, 2, ..., n. Then BPSAP(k) is mod-
elled by the integer program

max
n∑

i=1

n∑

j=1

aij xij

s.t. yj +
n∑

i=1

xij = 1 for all j = 1, . . . , n,

yi +
n∑

j=1

xij = 1 for all i = 1, . . . , n, (15)

n∑

i=1

yi = n − k,

xij ∈ {0, 1} for all i, j = 1, . . . , n,

yi ∈ {0, 1} for all i = 1, . . . , n. (16)

The constraint (16) guarantees that there are k assignment variables xij equal to 1 and
these assignment variables are in rows and columns with the same indices, i.e., in a
principal submatrix of size k.

The integer programming formulation given above suggests the following interpre-
tation of the best principal submatrix problem as an exact weighted matching problem
of the following form: We consider the complete bipartite graph Kn,n with n vertices
and arcs (i, j ′). The weight of arc (i, j ′) is aij and can be assumed to be nonnegative.
We call all arcs of this graph “blue”. Now we introduce n additional “red” arcs (i, i′),
i = 1, 2, .., n, and give them the weight 0 (this weight does not play any role). Now we
ask for a perfect matching in the bipartite multigraph with exactly n − k red arcs and
maximum weight. The blue arcs in the perfect matching form the optimal solution of
BPSAP(k).

Mulmuley, Vazirani and Vazirani [20] describe a method for solving the exact match-
ing problem (in an arbitrary graph Ḡ) by using the Tutte matrix of Ḡ. Since the Tutte
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matrix is not defined for multigraphs, we have to get rid of the parallel red and blue
arcs (i, i′) in order to apply this method. Therefore we construct the following extended
graph Ḡ. We replace in G all red arcs (i, i′) by a path (i, i1, i2, i3, i4, i

′) with new vertices
i1, i2, i3 and i4. The arc (i2, i3) is colored red, all other new arcs are colored blue. The
weight of all new arcs is set to 0. Now we can show

Lemma 6.1. Every perfect matching in the multigraph G corresponds uniquely to a
perfect matching with the same number of red arcs and the same weight in the extended
bipartite graph Ḡ, and vice versa.

Proof. Let M be a perfect matching of the multigraph G. We extend M to a perfect
matching M̄ of Ḡ in the following way: If (i, i′) is a red arc in M , we include the arcs
(i, i1), (i2, i3) and (i4, i

′) in M̄ . If the red arc (i, i′) is not in M , we include the arcs
(i1, i2) and (i3, i4) in M̄ . It is easy to see that M and M̄ are perfect matchings with the
same number of red arcs and the same weight.

Conversely, if M̄ is an arbitrary perfect matching in Ḡ, then either the arc (i1, i2) or
the arc (i2, i3) are matched, but not both. In the first case the red arc (i, i′) of G does
not belong to the matching M . In the second case the red arc (i, i′) is matched. Thus M̄

corresponds uniquely to a perfect matching M of G. �	
Due to Mulmuley, Vazirani and Vazirani [20] the exact weighted matching problem

in Ḡ as described above can be solved in randomized polynomial time, provided the
weights are polynomially bounded. Thus we get

Theorem 6.2. If the entries of the matrix A are polynomially bounded, the best princi-
pal submatrix assignment problem can for any k, 1 ≤ k ≤ n, be solved by a randomized
polynomial algorithm.

7. Conclusion

In the previous sections we outlined the role which assignment problems play in max-
algebra. The notion of the determinant as known in usual linear algebra cannot be
generalized in a straightforward way to max-algebra. On the contrary, permanents can
be generalized. Max-algebraic permanents correspond to linear assignment problems.
Many algebraic questions lead to new questions concerning assignment problems. For
example, the question whether every optimal assignment solution has the same parity is
intimately connected with the regularity of max-algebraic equation systems and the even
cycle problem of graphs. Though there exists an involved polynomial algorithm for de-
ciding this problem, still a practically efficient method is not known for this problem. In
connection with minimal-dimensional realizations of discrete event systems the problem
arises to solve linear assignment problems whose cost matrix is a Hankel matrix. Here
the question arises, if this can be done faster than in O(n3) steps. In connection with
eigenvalue problems we introduced the best principal submatrix assignment problem.
It is also a suitable tool for modelling the job rotation problem. It is still open, whether
the best principal submatrix assignment problem is polynomially solvable or not. In the
previous section we showed a close connection between the best principal submatrix as-
signment problem and the exact (weighted) matching problem, whose complexity status
is also still open. Thus a lot has to be done in the future.
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